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A reconstructive approach based on computational fragmentation of existing inhibitors and validated
kinase potency models to recombine and create “de novo” kinase inhibitor small molecule libraries is
described. The screening results from model selected molecules from the corporate database and seven
computationally derived small molecule libraries were used to evaluate this approach. Specifically, 1895
model selected databasemolecules were screened at 20 μM in six kinase assays and yielded an overall hit
rate of 84%. These models were then used in the de novo design of seven chemical libraries consisting of
20-50 compounds each. Then 179 compounds from synthesized libraries were tested against these six
kinases with an overall hit rate of 92%. Comparing predicted and observed selectivity profiles serves
to highlight the strengths and limitations of the methodology, while analysis of functional group
contributions from the libraries suggest general principles governing binding of ATP competitive
compounds.

Introduction

The kinase families’ function in signal transduction path-
ways has given rise to multiple attractive targets for thera-
peutic intervention in many disease states such as cancer,
diabetes, inflammation, and arthritis.1,2 Recently, multiple
drug launches and a variety of clinical studies with kinase
inhibition as the primary mechanism of action has probed
therapeutic space with inhibitors of this gene family. The
success of drugs with kinase inhibition as the mode of action
demonstrates the ability to deliver kinase inhibitor drugs with
varying selectivity, potency, and pharmacokinetic properties.
Kinase-targeted compounds carry various degrees of inter-

family selectivity as some marketed drugs inhibit several
kinases (e.g., sunitinib), and others are more selective (e.g.,
gefitinib).3 Thus, the understanding and practical application
of design principles which lead to kinase inhibitors with
appropriate selectivity are of high interest. Many clinical
and marketed ATP competitive kinase inhibitors exhibit a
similar pharmacophore.4 This pharmacophore, exemplified
by gefitinib among others (Figure 1a,b), contains a hinge
binding element that is connected to both hydrophobic and
solubilizing groups. A method that takes advantage of new
technology for the efficient design of kinase inhibitors carry-
ing this generalized pharmacophore has been developed.
Here we describe an application of this method to design,
synthesize, and assay kinase inhibitors to test the ability
of our pharmacophore hypothesis to probe general kinase
inhibition.
In order to understand kinase inhibitor potency and selec-

tivity, we have developed informatics and computational
approaches to characterize kinase target space from profiling
data.5,6We have demonstrated that correlations exist between
fragments or “privileged structures” within kinase inhibitors

and their binding affinity to particular kinases.7 In addition, it
was shown that similarity between kinase targets could be
derived from the similarity of the fragments making up
inhibitors of those particular kinases in a complementary
fashion to relating targets by whole ligand similarity,8 three-
dimensional protein-ligand structure,9 and full profiling ap-
proaches.10 Also described was the use of small molecule
inhibitor fragment frequencies for understanding kinase po-
tency and selectivity.7 In those efforts, Naı̈ve Bayes models
employing fragment frequencies provide highly interpretable
and reliable means for predicting potency in individual
kinases. Specifically, the models were utilized with moderate
success (40% hit rate) in prospective screening for new kinase
inhibitors.7

In this report, these concepts are taken a step further,
beyond retrospective analysis to prospective generation of
kinase inhibitor libraries. We introduce and prospectively
validate improved computational models utilizing a support
vector machine based method built with fingerprint descrip-
tors (SVMFPa),11 in the process of computer model driven
selection of compounds for biological testing (also referred to
as virtual screening12,13). The models are used as the driving
force to select among new combinations of hinge-binding,
hydrophobic and solubilizing fragments to design kinase
inhibitors. Building blocks for these experiments were gener-
ated from fragmentation of existing inhibitors.7,14 The result-
ing fragments were then recombined to create “de novo”
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aAbbreviations: FBDD, fragment-based drug design; SBDD, struc-
ture-based drug design;QSAR, quantitative structure-activity relation-
ship; SVM, support vector machine; SVMFP, support vector machine
fingerprints; PPV, positive predicted value; PDB, Protein Databank;
ATP, adenosine triphosphate; ABL1, c-abl oncogene 1, receptor tyro-
sine kinase; CHK2, CHK2 checkpoint kinase; FLT3, fms-related tyro-
sine kinase 3; MET, met proto-oncogene (hepatocyte growth factor
receptor); P70S6K, RPS6KB1 ribosomal protein S6 kinase; ROCK2,
Rho-associated, coiled-coil containing protein kinase 2; SP, single point;
rms, root-mean-square; NN, nearest neighbor.

D
ow

nl
oa

de
d 

by
 T

A
T

A
 I

N
ST

 O
F 

FU
N

D
A

M
E

N
T

A
L

 R
E

S 
on

 N
ov

em
be

r 
5,

 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
00

9 
| d

oi
: 1

0.
10

21
/jm

90
11

47
e



Article Journal of Medicinal Chemistry, 2009, Vol. 52, No. 20 6457

chemical libraries and scored using qualified models trained
on kinase potency. Analysis of the results from this experi-
ment and data for a variety of universal hydrophobic and
solubilizing groups for ABL1, CHK2, FLT3,MET, P70S6K,
and ROCK2 kinases are presented.

Methods

Overview

1 SVMFP models used to drive library selection were
validated in chronological testing (Supporting Informa-
tion Figure 1) and prospective screening of 1895 com-
pounds against six kinases (ABL1, CHK2, FLT3,
MET, P70S6K, and ROCK2).

2 A general kinase pharmacophore, exemplified in the
EGFRmarketed drug gefitinib (Figure 1a), was used as
a framework for libraries. SVMFPmodels were used to
predict combinations of hypothetical hinge elements,
hydrophobic and solubilizing groups from fragmented
kinase inhbitors to design seven “de novo” kinase
libraries with predicted activity in six kinases (ABL1,
CHK2, FLT3, MET, P70S6K, and ROCK2) as out-
lined in Figure 1c,d

3 Fourteen candidate libraries with all compounds pre-
dicted active (predicted >50% inhibition at 20 μM,
60% of compounds had predicted activity>70%) in at
least one of six SVMFP kinase inhibition models, were
initially selected and subsequently filtered to seven
based on ease of synthesis. Compounds were then
synthesized and assayed for single point (SP) % inhibi-
tion at 20 μM in these six kinases. The results showed a
92% confirmation rate of model predictions.

4 Model performance was analyzed for each library
focusing on group contributions of hydrophobic
and solubilizing moieties for utility of different kinase
inhibition.

SVMFP Model Development and Validation. Previously
described models used for kinase inhibition prediction7

utilized fragment frequency based naı̈ve Bayes models. In
this work, support vector machine (SVM)15 models using
Merck atom pair16 derived fingerprints were employed.
These models provided superior results with respect to
prediction accuracy as compared to the naı̈ve Bayes models.
Support vector machines (SVMs) are supervised learning
methods used for classification and regression.17,18 They
function by simultaneously minimizing the empirical classi-
fication error and maximizing the geometric margin. Others
have also reported on the utility of SVM models in QSAR-
based virtual screening.11,17 Aswithmostmodels, the quality
and relevance of model predictions and metrics of model
performance depend on the number and structural diversity
of compounds in the training set as well as the structural
diversity of compounds to be predicted, i.e., things close to
the training set generally get more reliable predictions than
those further away but specific results might vary. Best
practices indicate that one must split data into a test and
training set to get reliable unbiased performance estimates.19,20

Validation studies of the SVMFPmodels used here are based
on multiple test/train splits and statistical measures, includ-
ing positive predicted value (PPV) and active enrichments
representing the average of the results as reported in
earlier work.7 To further validate the models, chronological
test/train splits were used to validate these activity models
using earlier collected training data to predict test data

collected at a later date. This was done to provide a more
realistic estimate of model performance in a prospective
study with existing compounds than the standard random
selection of train/test splits, which can be overly optimistic
given the sequential structural explorations inherent to an
ongoing SAR studies. The less biased error estimates from
chronological validation originate from the observation that
new chemical diversity tends to be tested over time, better
revealing a model’s “extrapolation” prediction error on new
chemical diversity. This chronological model validation
scheme provides additional assurance that the models are
suitable for use in the design of new compounds. In this work
a variety of parameterswere considered to qualify themodels
including, number of observations in the training and test
sets, the number of actives, PPV, negative predictive value
(NPV), sensitivity, and specificity.
A set of six previously described kinase assays was as-

sembled from our internal research efforts for this study;7 we
substituted MKK6 with MET. To increase statistical sig-
nificance, at least 1400 actives (g70% inhibition at 20 μM
test substance concentration) and 16000 compounds assayed
(17K average) for each of the six kinase assays was required.
Details of the data used in modeling are given in Supporting
Information Table 1. Data for each target was sorted in a
chronological fashion, and the first 80% of compounds
was used to build models, while the next 10% of compounds
was used to test the model performance. The models were
also built with the first 90% of the data, for training, and the
last 10% to test model performance. This allowed for two
chronological evaluations of model performance. In addi-
tion, three standard random 50-50 splits were performed
using the first 80% of the data and the first 90% of the data,
providing an additional six random test sets. The final model
for prospective testing was then built using all data for each
target. A graphical representation of the validation protocol
and performancemetrics is presented in Figure 1 of Support-
ing Information.
The final models were used to select a set of 1895 pre-

viously untested compounds from our compound collection.
Any compound predicted to be more than 70% active in any
of six models was considered for screening. As much as
possible we tried to vary predictive selectivity of compounds
so that we could test performance of each model in this
experiment.

De Novo Design with Kinase Pharmacophore. To demon-
strate proof of concept for the utility of the SVMFP models
in driving the design of kinase inhibitors, the pharmacophore
shared by many ATP competitive kinase clinical and mar-
keted compounds, exemplified in Figure 1, were used. The
elements of the pharmacophore were supplied by fragmenta-
tion of existing kinase actives (defined as<1 μMIC50 in any
kinase) with our previously described dicer approach,7 fol-
lowed by binding mode predictions of hypothethical hinge
binding elements.21,22 Inputs for the virtual library enumera-
tion arose from 300 hinge binders, hydrophobic (less than or
equal to two heteroatoms) and solubilizing group (presence
of primary or secondary amine) coming from diced frag-
ments to more than 300 hinge binders. SVMFPmodels were
used to narrow down selection of hinge binders. A positional
scanning23like strategy was used to avoid impractical enu-
meration of all possible structures. In this strategy, substit-
uents for each candidate group (i.e., hydrophobic and
solubilizing groups) at each of two positions on the hinge-
binding group were scored relative to a random selection of
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Figure 1. (a) Kinase pharmacophore exemplified in marketed and clinical compounds. Solubilizing groups are highlighted with green,
hydrophobic with yellow, and hinge binders with cyan. (b) Three-dimensional picture of pharmacophore drawn over X-ray structures of
gefitinib (yellow carbons, 2ity.pdb) in EGFR and danusertib in Aurora A (magenta carbons, 2j50.pdb). EGFR kinase from 2ity.pdb is shown.
Transparent ovals in yellow, cyan, and green are drawn over hydrophobic, hinge binding, and solubilizing groups, respectively. Note that the
positions of both solubilizing and hydrophobic groups occupy slightly different region in both structures in contrast to the hinge binding
elements, which occupy similar space. Thr790 gate keeper in EGFR is shown in yellow stick representation. (c) Schematic representation of de
novo design process starting from actives, fragmentation, and reassembly. Reproduced with ACS permission from ref 7. (d) Hypothetical
application to three kinase drugs fromFigure 1. Solubilizing groups are highlighted in green, hydrophobic in yellow, and hinge binders in cyan.
Fragment connection atoms contain isotopic labels.
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five substituents for the other groups. Independence of the
two positions/groups was assumed for this strategy. This
assumption is likely to be working better for groups, which
are spatially separated andnot aswell for groupswhich are in
close proximity. It was hoped that the use of 5 substituents at
the other position instead of just one would allow for some
correction to this assumption. The enumeration resulted in
7500 compounds (5 � 5 � 300), which were then selected by
ranking the top 50 groups in each position by the highest
predicted activities for each target. A final 50 � 50 � 50
matrix was then enumerated for each target, and the final
best scoring 20 hinge binders and their best scoring com-
pounds were considered for synthetic feasibility. Once the
chemistry schemes were prepared, the libraries were re-
enumerated using reasonably priced reagents and scored
with the model for each target to select 20-60 compounds
predicted to have >50% activity in any of the six models.
Initially, we were hoping to use 70% threshold, but formany
libraries that proved rather difficult as models were too
conservative in venturing into new chemical space. This
difficulty was particularly evident for library 6, used as a
positive control in this experiment. The compounds were
described in the literature as MET inhibitors,24 however,
only 3 of 41were predicted to havemore than 70% inhibition
in one of the kinases.A total of 265 compoundswere targeted
for the seven libraries ranging from 19 to 60 compounds
each. The final 179 synthesized compounds were evaluated
in SP assays in six kinases at 20 μM, with SP hits defined
as >70% inhibition.

Results and Discussion

It should be noted that the hypotheses discussed here are
based on interpretation of actives as defined by single point
(SP) percent inhibition data measured at a 20 μM concentra-
tion. Although this measure is a good indication of a binding
event, any selectivity or potency comparison is limited relative

to analysis of dose response data. The percent inhibition data
was used for model comparison and analysis of group activ-
ities for our libraries because this responsewas consistent with
values used to train the models. IC50 data for one library is
presented tounderstand the correlation todose response data.
Overall, the translation is good, but the final dose response
data tends to vary in magnitude for compounds showing
similar, high percent inhibition.

SVMFP Model Performance and Validation. An element
critical to these retrospective studies was a sufficient number
of training set compounds and actives to properly estimate
the model performance in blind prospective validation tests.
In addition,model qualification for “de novo” library design
employed a stringent chronological validation studies to give
amore realistic estimate ofmodel performancemetrics. Parts
a-d of Figure 2 show a comparison of performance metrics
means derived from the prospective study along with two
chronological validation studies and six traditional, rando-
mized validation studies. The positive predictive value
(PPV), which is the most critical performance metric for
utilization ofmodels in “de novo” design studies, is above 0.6
for all studied targets in the prospective study results and
appears to be reasonably estimated by chronological and
random split validation studies. For MET, P70S6K, and
ROCK2, prospective study PPV appears to be very well
estimated by chronological validation, while random split
validation appears to provide a slight overestimate. For
the ABL1, FLT3, the prospective study PPV is overesti-
mated by both chronological and random split valida-
tion with the former, giving more realistic estimates. For
CHK2, chronological validation gives a lower estimate,
with random split validation giving a slight overestimate of
prospective PPV.
Prospective sensitivity is important in understanding the

false negative ratio and high sensitivity values are essential
for prediction of selectivity. Figure 2b shows that prediction

Figure 2. Comparison of Chronological, random validation with prospective metrics. (a) PPVs. (b) Sensitivities. (c) Root mean square
prediction error. (d) R2 values.
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sensitivity varies from 0.3, for the historically lowest hit rate
targetMET, to 0.9 for FLT3. In almost all cases, prospective
sensitivity is underestimated by both random and chronolo-
gical validations, with random validation estimates giving
significantly better estimates for P70S6K and CHK2 and
chronological validation being closer forROCK2andFLT3.
The rms error (see Figure 2c) is another metric important

for selectivity predictions. The prospective study rms results
are significantly higher in chronological and random split
validations for two targets (ABL1, FLT3) and only
slightly higher than chronological validation error forCHK2
and P70S6K. For the two other targets, medium range
differences from chronological results (MET, ROCK2) are
observed. In all cases, random split validation is under-
estimating the prospective errors more than the chronologi-
cal method.
R2 values, i.e., the variance in real data explained by the

models, may also be important for ranking the compounds
and determining model performance (Figure 2d). For all
targets, R2 prospective validation values are significantly
overestimated by both chronological and random split vali-
dations, with the chronological validation method
giving lower overestimates for all targets except FLT3;
note that all overestimates are large, especially for ABL1
and FLT3.
Figure 3 (and Table 1 in Supporting Information) shows

the general statistics for SVMFP model prospective valida-
tion studies of 1895 compounds in six kinase assays. Per
target hit rate, described as % of compounds >70% at 20
μM, are 2-4 fold higher than observed historically. Overall
kinase hit rate for the prospective validation compounds
increased 2.5 fold to 84%.The hit rate increasedmost (4 fold)

for MET, which historically was the lowest hit rate target at
9%, while the increase was the lowest at 2.2 fold (to 54%) for
FLT3;historically the most promiscuous of the six kinase
targets with a hit rate of 24%. Figure 3a shows the distribu-
tion of nearest neighbors (NN) using the fingerprint similar-
ity (a Tanimoto similarity index using molecular properties,
MACCS keys, and extended connectivity fingerprints7,25) to
the actives used to derive the models of the compounds
selected for the prospective experiment. The test set was
designed to eliminate as many closely related compounds to
the training set as possible, but a small number of closely
related structures were also included (with similarity >0.9,
where a value of 1 is identical) to test the similarity depen-
dence of active predictions. Very few compounds from our
collection with similarity <0.8 to known actives were pre-
dicted active in the models. The mean similarity of the
selected set to existing actives was 0.82. We also examined
the dependence of PPV as a function of similarity (NN
similarity bins of >0.9, <0.8, and >0.8) and unexpectedly
found that the PPVs for all targets were mostly independent
of similarity. We note, however, that the test set contained
very few compounds that are very similar to training set by
design. Figure 3c shows a bioprint visual comparison (i.e., a
heat map depiction of actives/inactives7) of predicted activi-
ties with experimentally determined values for all prospec-
tive compounds. The comparison looks favorable for all
targets and qualitatively confirms the values shown for the
performance metrics.

Library Design Results. Armed with prospectively vali-
dated models for six targets (overall 84% hit rate, good PPV
estimates, and sensitivities) high hit rates, although probably
lower than obtained for the validation, was anticipated for

Figure 3. Results from prospective testing. Distribution of nearest neighbor similarity of 1895 compounds with respect to 5870 historical
actives. The fingerprints used for this study are a combination ofmolecular properties (atomcount, size of largest ring, number of rings, number
of ring atoms, number of aromatic atoms, number of fused ring atoms, number of heteroatoms), MACCS keys,25 and extended connectivity
fingerprints with size 3 shell. Tanimoto similarity in this fingerprint space between kinase drugs from Figure 1 was the following:
gefinitib-cedinarib 0.728, danusertib-cedinarib 0.592, danusertib-gefinitib 0.585. (a) Distribution of nearest neighbor similarity. (b)
Comparison of historical hit rates with prospective validation. (c) Bioprint of predicted (top) and observed (bottom) activities at 20uM for
1895 compounds in 6 kinases. MET had 1392 measurements.
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the “de novo” libraries. This was the first time the models
were applied to previously unexplored chemical space where
a majority of compounds are less than 0.8, similar to the
training set actives of the six kinase targets. As shown in
Figure 4a, the NN similarity distribution of library com-
pounds averaged 0.74, much lower than the prospective
validation set. On the other hand, all library compounds

shared a common pharmacophore and hinge binding ele-
ments that were present in actives, although with different
connections and R groups. Results for all libraries signifi-
cantly exceeded expectations as shown in Figure 4b. In fact
the overall hit rate of 92% exceeded even that of the
prospective test set. Hit and enrichment rates for each target
were also higher, with values ranging from 50% (CHK2) to

Figure 4. Results from library testing. (a) Distribution of nearest neighbor similarity of 179 compounds with respect to 6422 historical actives.
(b) Comparison of historical hit rates with prospective validation and library hit rate. (c) Bioprint of predicted (top) and observed (bottom)
activities at 20 μM for 179 compounds in six kinases. MET had 116 measurements..

Figure 5. Comparison of model performance metrics for prospective validation and library compounds. (a) Mean model predictions and
standard deviations for six targets.All differences inmeans are statistically significant except forFLT3. (b) PPVs and sensitivities. (c) Prediction
rms. (d) R2 values: the low values for library compounds might be influenced by higher means for predicted values and lower standard
deviations..
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90% (FLT3). The largest increase was observed for ABL1,
with >80% hit rate compared to 10% for historical com-
pounds and 30% for prospective test set. Not surprisingly, a
qualitative correspondence shown in the bioprint format is
low, as the activity of many compounds were significantly
under predicted in cases where compounds showed activity
across all targets (Figure 4c). While it is rewarding that the
models led to active compounds, it appeared that the strategy
and pharmacophore led to compounds with multiple kinase
activities, i.e., promiscuous inhibitors. To learn from this
experiment, the model performance metrics were contrasted
for the library compounds and those from the prospective
validation studies. The results are graphically displayed in
Figure 5a-d (and in Table 2 in Supporting Information).
First, the mean prediction values are significantly higher for
library compounds in four targets, with FLT3 and ROCK2
minimally lower, than predictions for the validation set.
Standard deviations of these values are significantly lower
for the libraries than the validation set, suggesting that the
predictions for library compounds were higher and within a
narrower range, i.e., most library compounds were predicted
to be more active across the board. Model PPV values were
significantly higher for ABL1, FLT3, and ROCK2, com-
parable forMET and P70S6K and lower than those found in
the prospective set for CHK2. Sensitivities were notably
lower for library compounds, with the largest differences
for ROCK2 (0.63 vs 0.01 for libraries) and ABL1 (0.55 vs
0.11). The only target with comparable sensitivity between
the library and validation sets was P70S6K (0.48 vs 0.46).
Low sensitivities point to significant underpredictions of
activity for all targets, representing a significant challenge
in model utilization for selectivity design. As a consequence
of narrower, higher predictions, the R2 values are no better
than random indicators for model quality for all targets
except ROCK2 (target with marginal sensitivity).
Another way to look into the results for the prospective set

and library compounds is to compute cross-target correla-
tions for both experimental and predicted values. The results
are presented in Table 1 for all target pairs. Correlations
between pairs of targets for the experimental values for 1895
prospective compounds is low, except for P70S6K and
CHK2 (R2 = 0.35, R = 0.6). On the other hand, the 179
library compounds give higher correlations for P70S6K and
MET (R2 = 0.6), FLT3 and ABL1 (R2 = 0.5), ROCK2 and
MET (R2 = 0.44), ROCK2 and P70S6K (R2 = 0.37), and
similar for P70S6K and CHK2 (R2= 0.36). Thus, it appears
that the pharmacophore used in the designed libraries in-
creases the likelihood of getting similar potency for multiple
pairs of targets. Interestingly, the models predict the highest
correlations for FLT3 and CHK2 for library compounds;
this is not observed in the experimental data. For library
compounds, the models also predict high correlations for
P70S6K against four other targets, with three of these
confirmed by the experimental data. Most notably, the
models underestimate the highest experimental correlations
between P70S6K andMET. These results (Table 1) show the
difficulty of accurately estimating target relationships (and
thus selectivity) for new data sets either from previous
relationships or predictive models. In summary of the model
performance, we noted that utilization of model combina-
tion strategy (selecting molecules predicted active in any of
the models) worked well in designing active compounds,
while we still remain significantly challenged in utilization of
models to design selective compounds. It is likely that a

different, more target specific pharmacophore, more similar
chemotypes to existing actives, or a different set of targets
could result in a more specific design, but this experiment
highlights successes and challenges of good model driven de
novo design.

Selected Data for One Standard Library. As a part of our
proof of concept, one library (library 6) was used as positive
control. For this library, we used model driven substituent
selection to make up compounds previously described as
MET kinase inhibitors.24 Interestingly, most compounds
from this library showed rather low predicted activity as
only 3 of 44 synthesized compounds were predicted to be
higher than 70%percent in any of six kinases (all compounds
were predicted >50%). This compares to 76% predicted
actives in the other six libraries. As anticipated from the
literature24 all compounds from this library showed activity
(>70% at 20 μM) in at least one kinase. A sample of data,
including dose response, is shown in Table 2. To summarize,
the data for these compounds highlights good translation of
% inhibition to dose response forCHK2, underestimation of
activity for this library, and little differentiation between %
inhibition and the IC50 values (necessitating determination
of IC50s for compounds of specific interest). Compounds
from this library exemplify the multikinase inhibition nature
of other libraries designed in this study.

Analysis of Hydrophobic and Solubilizing Groups. To gain
structural insights into the results of solubilizing and hydro-
phobic groups in our libraries, the data for compounds in
which common solubilizing and hydrophobic groups were
present were analyzed. Groups appearing in more than one
library were identified to ensure the results were not depen-
dent on a particular choice of a hinge binder. Parts a and b of
Table 3 show mean % inhibition values for all compounds
containing a particular group for the 12 solubilizing groups
(Table 3a) and nine hydrophobic groups (Table 3b) exam-
ined. In addition, we examined the mean best target (the
best activity for all targets) % inhibitions, mean number
of atoms in compounds with that group, together with mean
polar surface area (PSA)26 and CLOGD27 values. The
groups are sorted based on their mean best target inhibition.

Table 1. Target Cross-Correlation R2 Tables for Experimental and
Predicted % Inhibition Valuesa

a R2 values are reported. Upper diagonal: experimental values, pro-
spectiveN=1895, except forMETN=1392, library in parenthesesN=
179, (METN=116). Lower diagonal: predicted values,N=179, except
forMETN=116, library compound correlations in parentheses. Kinase
group and gate keeper residues (in parentheses) are included in table
headings. Sequence identities between six kinases are available in
Supporting Information. *P > 0.05.
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Some solubilizing groups, like the phenyl sulfonamide piper-
azine, are highly potent across all targets. Others like meta-
and ortho-substituted benzyl piperidines are more active in
Abl1, FLT3 (above in 90%) but have low activity in MET.
Meta-substituted phenyl piperazines appear to give the low-
est activity likely due to steric hindrance. The smallest
solubilizing group used, para-benzyl-N-Me-amine, shows
mean activity >80.5% in MET and FLT3, with lowest

activity in ROCK2. All solubilizing groups appear on ave-
rage most potent in FLT3 as compared to the other five
kinases.
In slight contrast to the solubilizing groups, the nine

common hydrophobic groups show, on average, less pro-
miscuity andmore target differentiation. This may be under-
standable, as they target the gate keeper regionwhich is often
hypothesized to be responsible for selectivity.4,28 However

Table 2. Structures and Data for Example of Compounds from Library 6a

aHydrophobic groups are drawn in red, solubilizing in green. Predicted values are shown in bottom row for each structure. Heat map color coding is
used to denote the degree of predicted and observed inhibition. Dose response data for CHK2 and MET shown.
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Table 3. Structures and Experimentally Observed, Averaged % Inhibitions for Library Compounds: (a) Solubilizing Groups, (b) Hydrophobic
Groupsa
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gate keeper identity is not likely to be the only determinant of
hydrophobic group differentiation.While similarity between
activity of hydrophobic groups exemplified in Table 3b for
two Leu gate keeper targets (P70 and CHK2) is high, there is
also high correlation of averaged activity of these groups
between Abl (Thr gate keeper) and Flt3 (Phe gate keeper)
as well as between ROCK2 (Met gate keeper) and P70S6K
(Leu gate keeper).
Hydrophobic groups in Table 3b are sorted with respect

to their mean maximum % inhibition. 4-Substituted-indole
carries high (>90%) mean activity in Abl1 and FLT3, with
lower values in MET, while 5-substituted indole is more
ubiquitous across the board, with>90%mean inhibition in
FLT3 and MET. Phenyl is quite similar for all targets with
<70%mean inhibition only in ROCK2, but benzyl gives the
highest mean % inhibition in MET across all targets and
groups. CHK2 appears to have preference for 5-subsituted
indole from all examined groups. Thus the CHK2 activity of
compounds from library 6 exemplified in Table 2 likely
comes from the presence of the 5-substituted indole. The
presence of halogens in the multiple hydrophobic groups
exemplified here may play a role in potential halogen bond-
ing29 phenomenon in addition to providing steric and hydro-
phobic effect.
Mean values for atom counts, CLOGD, and polar surface

area (PSA) are shown in Table 3 to give connection to
physical properties.Most structures are in favorable physical
property space,5,30,31 with computed CLOGD values less
than 3, a reasonable size with less than 35 heavy atoms and
less than 120 PSA values.

Conclusions

In summary, we have shown how model driven kinase
inhibitor design can be used to probe kinase space with new
inhibitors. It was demonstrated that highly validated models
can be used in virtual screening and to design active, multi-

kinase inhibitors.Our prospective results showmore balanced
predictability for all targets and better potential to probe
selectivity for compounds closely related to training set com-
pounds. The library results, which make use of a generic
framework, showed that while this pharmacophore approach
is good at uncovering kinase actives, it is challenged in terms
of designing selective compounds. For instance, the inability
to achieve good model sensitivity suggests that more work is
needed to utilize this methodology to create selective tools for
kinase target validation. Nevertheless, the group analysis
described here sheds some light into the future design of more
targeted inhibitors. In general, the ability to validate and use
predictive modeling in blind/prospective experiments and de
novodesignofnew compounds fromexisting informationwas
demonstrated.Toourknowledge, the overall virtual screening
results show unprecedented success as compared to previous
prospective literature reports.12 Our de novo driven library
results are evenmore encouragingwhen compared to reported
computer driven designs, which utilized minor modifica-
tions of existing inhibitors with 30-40% success rate.32 The
implications of this research span fragment based drug dis-
covery,33 selectivity considerations, and predictive modeling
applications/expectations. Understanding the proper utiliza-
tion of predictive models demonstrated by our work should
raise the standards of new compound design not only for
protein kinases but for other gene families for which sufficient
high quality data is available.

Acknowledgment. We thank Drs. Sutherland, Robertson,
Hemmerle, Toth, and Bloem, and the Lilly Library Sciences
Group for supporting this research.

Supporting Information Available: General statistics for
models, historical hit rates, and prospective validation result;
model performance metrics for prospective validation (1895
compounds) and libraries (179 compounds); target correlation

aEach depicted fragment had to be present in minimum of two libraries. Mean values are given for all targets and properties. Red to blue heat-map
color codingwith distinct colors for>90%,>70%,>50%, and<50%.Mean values for atomcounts, CLOGD, andPSAare shown to give connection
to physical properties. Connection atoms contain isotopic labels.

Table 3. Continued
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table with sequence identity included; graphical demonstration
of chronological validation and PPV concepts; biological assay
description. Biological profiling data and compound data in
fingerprint format are available from authors upon request.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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